
Gsi – GERT simulation

Jǐŕı Demel

This paper describes a simulation program Gsi for evaluation of GERT net-
works. This work was supported by research plan MSM6840770006. It was
created on Department of Applied Informatics, Faculty of Civil Engineering,
Czech Technical University in Prague.

1 GERT networks

GERT network is a model of a random proces. It has a form of directed graph
with additional information.

Arcs of the graph represent activities. An activity is described by it’s random
duration and by a conditional probability that the activity is executed provided
that its start node was activated. Several activities can be running in parallel.

Nodes of the graph represent events. There are several types of nodes. Each
node is assigned type of input an type of output which together form type of a
node.

Type of input can be either OR or AND.

OR Node of input type OR is activated by termination of any incoming activity.

AND Node of type AND is activated by termination of all incoming activities.

Type of output can be D (deterministic) or ST (stochastic).

D When deterministic node is activated all outgoing activities are started so
that they run in parallel.

ST When stochastic node is activated exactly one of outgoing activities is ran-
domly selected and started. For this purpose all outgoing arcs are assigned
conditional probabilities that the arc will be started provided it’s starting
node is activated. Sum of those probabilities must be equal to one.

The description of input and ouput type of a node is combined to single
word. So we have four types of nodes: STOR, STAND, DOR, DAND.

Additionally exactly one of nodes is defined to be start node. It is automat-
ically activated at time 0.0.

In GERT networks with all nodes of type STOR at any model time only one
activity can be running. This special sort of GERT networks can be evaluated
by analytical methods.

General GERT networks are analyzed by the simulation based on the Monte-
Carlo method, i.e. by performing random simulation experiments with the
network an by statistical evaluation of the series experiments. In the sequel we
call the experiment simulation run. Each simulation run starts at model time
0.0. The number of simulation runs is given by the simulate statement in input
file.

1



2 Running the program

The program Gsi is written in Java, so Java Runtime Enviroment is necessary.
The program can be run by command line

java --jar gsi.jar input file [> output file]

The program produces results on standard output. The standard output is
usually redirected to a file.

Format of input file is described in the following section.

3 Input file

Input file is line oriented plain text file. Each line starts with a keyword and
contains one or more parameters separated by spaces. All input lines except
comments (//) and empty lines are copied ot transformed to the output file.

The file starts with zero or more commands model and ends with command
simulate. Order of all other lines is arbitrary. All keywords are case insensitive.

model may contain informal description of the GERT model. Eaxh line of the
descriptiom must start with the keyword model.

node name node
describes a node. The name is arbitrary text, the type is one of stand,
stor, dand, dor.

arc nodeFrom nodeTo probability distribution p1 p2 p3
describes an activity where nodeFrom and nodeTo are nodes, probability
is conditional probability of starting the activity if nodeFrom is activated.
If nodeFrom is of deterministic type the probability is irrelevant. Distri-
bution and its parameters are described later.

startNode name
defines the node that starts simulation.

stopAtTime time
defines a time at which the simulation run should stop.

seed number
defines seed of random number generator. If omitted a seed is derived
from a system time of the computer. In any case the really used seed is
listed in the output file.

logLevel number
is an integer between 0 and 5 which defines verbosity of the protocol of
simulation.

simulate number
defines the number of simulation runs. Each simulation run starts at model
time 0.0. This statement terminates the input file and starts processing
of the model. Hence the rest of the input file is ignored.

// introduces a comment. The two slashes must be followed by a space. The
rest of line is ignored. It can be used for temporary changes in the input
file.

Random distribution of the duration is defined by a keyword and by one to
three parameters.

2



keyword p1 p2 p3 distribution

const value — — constant
exp mean — — exponential
uniform min max — uniform
gauss mean std. dev. — normal
triangle min max mode triangle
beta min max mode PERT-beta

Example input file:

model Example GERT network

model ====================

model

model (several lines of description}

node a1 DOR

arc a1 a2 1.0 triangle 2.0 5.0 3.0

arc a1 a3 1.0 const 2.0

node a2 dand

arc a2 a4 1 uniform 2 3

arc a2 a5 1 triangle 2. 5. 4.

node a3 STor

arc a3 a4 0.3 exp 2.0

arc a3 a5 0.7 exp 2.0

node a4 Dand

node a5 dand

arc a5 a3 1.0 gauss 2 1

startNode a1

stopAtTime 20.0

seed 1234567

logLevel 4

simulate 100

4 Simulation and output file

Output file consists of four parts.

4.1 Paraphrase of input file

First, the input file is paraphrased. It is not exact copy. If there are syntactic
errors (e.g. missing values) they are reported and the program stops. So the
last paraphrased line indicates position of the error. For example:

Node: a2 dand

Arc: a2 --> a4 P=1.0 Distribution: uniform 2.0 3.0 0.0

Arc: a2 --> a5 P=1.0 Distribution: triangle 2.0 5.0 4.0

Node: a3 stxor

Unknown type of node: stxor

3



4.2 Verification of the model

When statement simulate was reached in the input file all nodes and arcs are
linked together and the structure of the resulting network is verified. If the
verification was successfull the output file contains

----- Model linked and verified -----

Otherwise errors are reported. For example:

Arc: a3 --> aX P=0.7 Distribution: exp 2.0 0.0 0.0

Target node not found: aX

4.3 Protocol of the simulation

Third part of the output file is a protocol of the simulation. It is useful for
debugging of the model. Verbosity of the protocol depends on logLevel given
in the input file.

0 no protocol at all
1 begininngs and ends of all single simulation runs
2 activations of nodes
3 started and stopped activities and their durations
4 tests whether a node can be activated (fired)
5 durations of activities.

Each simulation run is terminated either by overruning of the model time
given by parameter stopAtTime, or by a deadlock, i.e. the situation when all
running activities stopped and nothing more can happen in the model. For
example for logLevel 2 the 95th simulation run may produce:

----- started simulaion run 95 out of 100

0.0: node a1 fired

2.0: node a3 fired

3.8695678426750977: node a2 fired

7.095701339808068: node a5 fired

9.79219687986848: node a3 fired

10.716911183624642: Deadlock (empty queue) occured

4.4 Statistics

The final part of the output file are statistics.
Note that random seed is reported even in the case when no random seed

was given in the input file.
If there was no explicitly given random seed in the input file, the random

number generator was initialized by a value that was derived from the system
time of the computer. In such a case repeated runs of the program with identical
input file would produce different output files. If an error or some anomaly
appeared during the simulation, without knowledge of used random seed it
would be impossible to repeat the same simulation with higher level of logLevel.

Next, for each node several values are reported. The count is the numbet
of activations of the node in all simulation runs together. If count > 0 then
mean, stDev, min and max are statistics of model times at which the node was
activated. Note that during a simulation run a node can be activated more than
once.

----- Statistics of 100 simulation runs -----

used random seed 1234567

4



Node a1

count = 100

mean = 0.0

stDev = 0.0

min = 0.0

max = 4.9E-324

Node a2

count = 100

mean = 3.5069466251177728

stDev = 0.6647532641162206

min = 2.326633025019118

max = 4.617772288789209

Node a3

count = 163

mean = 4.815648149803005

stDev = 3.677733573814523

min = 2.0

max = 13.50782628023614

Node a4

count = 57

mean = 7.915406664953615

stDev = 2.8918362371248945

min = 4.436708311447584

max = 15.3511677109553

Node a5

count = 63

mean = 7.355930576884992

stDev = 1.0375717043671417

min = 5.068987839662446

max = 12.384425613726554

----- End of Gsi -----

5


