
Gsi – GERT simulation
version 2.0

Jǐŕı Demel

This paper describes version 2 of a simulation program Gsi for evaluation of
GERT networks. This work was supported by research plan MSM6840770006.
It was created on Department of Applied Informatics, Faculty of Civil Engi-
neering, Czech Technical University in Prague.

Main enhancement in version 2 is an implementation of Exclusive OR nodes.

1 GERT networks

GERT network is a model of a random proces. It has a form of directed graph
with additional information.

Arcs of the graph represent activities. In addition to its start node and end
node an activity is described by it’s random duration and a conditional prob-
ability that the activity is executed provided that its start node was activated
(fired). Several activities can be running in parallel. Even the same activity can
be running several times in parallel.

Nodes of the graph represent events. A node is activated by termination of
one or more of its incoming activities. When the node is activated, we call it is
fired, one or all of its outgoing activities are started.

There are several types of nodes. Each node is assigned type of input and
type of output which together form type of a node.

Type of input of a node can be either AND or OR or EOR.

AND Node of type AND is activated by termination of all incoming activities.
Note that every incoming activity must be terminated. It may happen that
some activities are terminated several times before the node is activated
and fired.

OR Node of input type OR is activated by termination of at least one incoming
activity. The node is activatedf even if two or more incoming activities
are terminated at the same time,

EOR Node of type EOR (Exclusive OR) is activated by termination a single
incoming activity. When two or more incoming activities are terminated
at the same moment of time the node is not activated, so the execution of
those incoming activities is wasted. When two or more incoming activities
are terminated in separate moments of time it results in several succesive
activations of the node.

Type of output of a node defines what happens when the node is activated
(fired). The type can be either D (as deterministic) or ST (as stochastic).

D: When deterministic node is activated all outgoing activities are immediately
started so that they run in parallel.

1



ST: When stochastic node is activated exactly one of outgoing activities is
randomly selected and started. For this purpose all outgoing arcs are
assigned conditional probabilities that the activity will be started provided
it’s starting node is fired. Sum of those probabilities must be equal to one.

The description of input and ouput type of a node is combined to single
word. So we have six types of nodes: STAND, STOR, STEOR, DAND, DOR,
DEOR.

Exactly one of nodes must be defined to be start node. The start node is
automatically (and by definition) fired at time 0.0.

In GERT networks with all nodes of type STOR at any model time only one
activity can be running. This special sort of GERT networks can be evaluated
by analytical methods.

General GERT networks are analyzed by the simulation based on the Monte-
Carlo method, i.e. by performing random simulation experiments with the
network an by statistical evaluation of those experiments. In the sequel we call
the experiment simulation run. Each simulation run starts at model time 0.0.
The number of simulation runs is given by the simulate statement in input file.

2 Implementation

At any moment of the simulation time the set of simultaneously running ac-
tivities is kept in a priority queue que with termination times in the role of
the priority. The que may contain several activities with the same termination
times.

When a node is fired, it starts one or all outgoing activiies. Whenever an
activity is started it generates a duration of itself, computes the time of the
event of its termination and inserts the event into a priority queue que. If the
node was activated by one or more signals from its incoming activities, it clears
all those signals to be prepared for possible next activation.

In a general simulation step the program advances the simulation time to
the nearest moment of termination of an activity in the que. The activity then
signals to its end node the possibility of activation.

When the node obtains a signal, it verifies the possibility of firing itself. An
OR node is activated whenever any signal comes from any incoming activity.

When AND node receives a signal it has to examine all signals from all
incoming activities. If all incoming activities are signalling their terminations,
the node cleares all incoming signals and fires itself.

Evaluation of EOR nodes more complicated, it cannot be performed “on the
fly”. Several signals from incoming activities may come within the same model
time. In another words, if several events happen simultaneously, i.e. at the
same model time, those events will be evaluated by a simulation program in
several simulation steps. Therefore the decision whether the EOR node should
be fired must be postponed to the point when all events with the same time are
processed.

With each EOR node a state of the node is maintained. Most of the time
the node is in state IDLE. If a node is in IDLE state and it receives a signal,
it changes its state to SUSPENDED. If the next signal comes and the node is
in state SUSPENDED, it means that the signal is the secind signal at the same
model time. Therefore the state of the node is changed to FAILED. Moreover,
all SUSPENDED and FAILED nodes are kept in a list for later processing.

Every time when the program processed an event, it looks ahead whether the
next event in the que belongs to the same model time. If yes, the program simply
steps forward to the next time point. If not, it means that all events with the

2



same model time have just been processed. Therefore the list of SUSPENDED
and FAILED nodes is processed. All SUSPENDED nodes are fired (because
they obtained only one signal) and all SUSPENDED and FAILED nodes are
asked to clear all incoming signals and the list itself is cleared. After that the
program steps forward to the next event in the que.

The evaluation whether the present and the next event belong to the same
model time must be done with some small tolerance, because of rounding errors.
The tolerance can be adjusted in the input file by a parameter delta.

3 Running the program

The program Gsi is written in Java, so Java Runtime Enviroment is necessary.
The program can be run by command line

java --jar gsi.jar input file [> output file]

The program produces results on standard output. The standard output is
usually redirected to a file.

Format of input file is described in the next section.

4 Input file

Input file is line oriented plain text file. Each line starts with a keyword and
contains one or more parameters separated by spaces. All input lines except
comments (//) and empty lines are copied (possibly transformed) to the output
file.

The file starts with zero or more commands model and ends with command
simulate. Order of all other lines is arbitrary. All keywords are case insensitive.

model may contain informal description of the GERT model. Each line of the
descriptiom must start with the keyword model.

node name type
describes a node. The name is arbitrary text, the type is one of stand,
stor, steor, dand, dor, deor.

arc nodeFrom nodeTo probability distribution p1 p2 p3
describes an activity where nodeFrom and nodeTo are nodes, probability
is conditional probability of starting the activity if nodeFrom is activated.
If nodeFrom is of deterministic type the probability is irrelevant but must
be given. Distribution and its parameters are described later.

startNode name
defines the node that starts simulation. This node is fired at time 0.0.

stopAtTime time
defines a time at which the simulation run should stop.

seed number
defines seed of random number generator. If omitted a seed is derived
from a system time of the computer. In any case the really used seed is
listed in the output file.

logLevel number
is an integer between 0 and 5 which defines verbosity of the protocol of
simulation.

3



simulate number
defines the number of simulation runs. Each simulation run starts at model
time 0.0. This statement terminates the input file and starts processing
of the model. Hence the rest of the input file is ignored.

// introduces a comment. The two slashes must be followed by a space. The
rest of line is ignored. It can be used for temporary changes in the input
file.

Random distribution of the duration is defined by a keyword and by one to
three parameters.

keyword p1 p2 p3 distribution

const value — — constant
exp mean — — exponential
uniform min max — uniform
intuniform min max step uniform
gauss mean std. dev. — normal
triangle min max mode triangle
beta min max mode PERT-beta

Example input file:

model Example GERT network

model ====================

model

model (several lines of description}

node a1 DOR

arc a1 a2 1.0 triangle 2.0 5.0 3.0

arc a1 a3 1.0 const 2.0

node a2 dand

arc a2 a4 1 uniform 2 3

arc a2 a5 1 triangle 2. 5. 4.

node a3 STor

arc a3 a4 0.3 exp 2.0

arc a3 a5 0.7 exp 2.0

node a4 Dand

node a5 dand

arc a5 a3 1.0 gauss 2 1

startNode a1

stopAtTime 20.0

seed 1234567

logLevel 4

simulate 100

5 Simulation and output file

Output file consists of four parts.

4



5.1 Paraphrase of input file

First, the input file is paraphrased. It is not exact copy. If there are syntactic
errors (e.g. missing values) they are reported and the program stops. So the
last paraphrased line indicates position of the error. For example:

Node: a2 dand

Arc: a2 --> a4 P=1.0 Distribution: uniform 2.0 3.0 0.0

Arc: a2 --> a5 P=1.0 Distribution: triangle 2.0 5.0 4.0

Node: a3 stxor

Unknown type of node: stxor

5.2 Verification of the model

When statement simulate was reached in the input file all nodes and arcs are
linked together and the structure of the resulting network is verified. If the
verification was successfull the output file contains

----- Model linked and verified -----

Otherwise errors are reported. For example:

Arc: a3 --> aX P=0.7 Distribution: exp 2.0 0.0 0.0

Target node not found: aX

5.3 Protocol of the simulation

Third part of the output file is a protocol of the simulation. It is useful for
debugging of the model. Verbosity of the protocol depends on logLevel given
in the input file.

0 no protocol at all
1 begininngs and ends of all single simulation runs
2 activations of nodes
3 started and stopped activities and their durations
4 tests whether a node can be activated (fired)
5 durations of activities.

Each simulation run is terminated either by overruning of the model time
given by parameter stopAtTime, or by a deadlock, i.e. the situation when all
running activities stopped and nothing more can happen in the model. For
example for logLevel 2 the 95th simulation run may produce:

----- started simulaion run 95 out of 100

0.0: node a1 fired

2.0: node a3 fired

3.8695678426750977: node a2 fired

7.095701339808068: node a5 fired

9.79219687986848: node a3 fired

10.716911183624642: Deadlock (empty queue) occured

5.4 Statistics

The final part of the output file are statistics.
Note that random seed is reported even in the case when no random seed

was given in the input file.
If there was no explicitly given random seed in the input file, the random

number generator was initialized by a value that was derived from the system
time of the computer. In such a case repeated runs of the program with identical
input file would produce different output files. If an error or some anomaly

5



appeared during the simulation, without knowledge of used random seed it
would be impossible to repeat the same simulation with higher level of logLevel.

Next, for each node several values are reported. The count is the numbet
of activations of the node in all simulation runs together. If count > 0 then
mean, stDev, min and max are statistics of model times at which the node was
activated. Note that during a simulation run a node can be activated more than
once.

----- Statistics of 100 simulation runs -----

used random seed 1234567

Node a1

count = 100

mean = 0.0

stDev = 0.0

min = 0.0

max = 4.9E-324

Node a2

count = 100

mean = 3.5069466251177728

stDev = 0.6647532641162206

min = 2.326633025019118

max = 4.617772288789209

Node a3

count = 163

mean = 4.815648149803005

stDev = 3.677733573814523

min = 2.0

max = 13.50782628023614

Node a4

count = 57

mean = 7.915406664953615

stDev = 2.8918362371248945

min = 4.436708311447584

max = 15.3511677109553

Node a5

count = 63

mean = 7.355930576884992

stDev = 1.0375717043671417

min = 5.068987839662446

max = 12.384425613726554

----- End of Gsi -----

6


